

AUTO-CAAS: Model-Based Fault

Prediction and Diagnosis of
Automotive Software

Wojciech Mostowski and Mohammad Mousavi

Model-Based Testing Group,
Centre for Research on Embedded Systems (CERES)

Scandinavian Safety Conference 2016

Elevator pitch

Bug fixing is like dying:
Denial è Anger è Acceptance

Demonstrating probability and severity to
facilitate the process

Using machine learning to capture all failing
scenarios

Context: AUTOSAR software

2

Partners & Funding
Halmstad University
Research in model-based testing and
software verification

Quviq A.B., Sweden
Model-based testing tool QuickCheck,
AUTOSAR models and testing expertise

ArcCore A.B., Sweden
AUTOSAR development environment,
open source AUTOSAR implementation

Funded by

A comprehensive standard for
building automotive software

In particular, description of
basic software components /
libraries

~3k pages of text

Examples:
CAN-bus stack, FlexRay stack,
memory access interfaces,
hardware abstraction
(e.g. PWM / ADC), …

Motivation

•  Automotive Open System Architecture – AUTOSAR

•  To enable pluggable components and multiple vendors

•  Room for interpretation and optimisation
–  Intentional and inadvertent specification loopholes

–  Specific implementations differ
(from each other and from the spec)

•  Results in non-conformant components
•  Can lead to serious problems in integration
•  Research question – measure the severity, find the

consequences

5

Goals

 In the context of the AUTOSAR standard:

1 Measure the severity of deviations in non-conformant
components; show how a selection in a given (complex) system
leads to a failure (bottom-up)

2 Given a failure of the system and the knowledge of deviations in
components, identify the root cause (top-down)

4 6

1 Model-Based Testing (MBT)

2 Machine learning techniques

3 Symbolic execution

7

Means

MBT Ecosystem

c	b	

a	

Model	

Test-Case Generator
(UPPAAL Yggdrasil,

SpecExplorer,
RT-Tester,

QuickCheck
Sikuli)

a 0	
1	

a	 b	 c	
idle	

Next	

Impl.	Under	Test	

A
d
apto

r

Test Result:
pass or fail

(+ counterexample)

Coverage Metrics

Traceability Info.

Test DB

8

Model Based Testing with
QuickCheck

Erlang based tool for guided random test generation Based

on a state-full model / specification

Can test functions in separation, but also their interaction

Very snappy and cool!

Probably more about this in John’s talk

The First Task
1 Detect and classify non-conformances

2 Summarise / formalise them

The First Task
1 Detect and classify non-conformances

2 Generalize and summarise them

Problem 1 is relatively easy:
Use QuickCheck and AUTOSAR models to find concrete
failures

Part 2 is to quickly detect whether a particular behaviour
observed later falls into the non-conformance, a formal
description of sorts

Specification of Non-Conformance
Negative model of the component

I.e. a description of what the non-conformance does

Saturated to only that behaviour,
other (correct) behaviours not in scope

Can be parametric to further differentiate kinds of a particular
non-conformance

[What QuickCheck actually does for implementation variants]

Specification of Non-Conformance
Negative model of the component

I.e. a description of what the non-conformance does

Saturated to only that behaviour,
other (correct) behaviours not in scope

Can be parametric to further differentiate kinds of a particular
non-conformance

[What QuickCheck actually does for implementation variants]

Question 1

How to generate it (semi-)automatically out of a (failing) test?

Constructing Negative Models
Automata learning

Normally used to learn the models of correct, black-box systems

Now learn about failures / non-conformances

Not so straightforward:

How can we be sure that we learn about one failure?
How to remove “noise” during learning?
How to keep the input alphabet small?

LearnLib: Automata Learning framework implemented in Java
(powerful and unfortunately complex)

Interface LearnLib to QuickCheck

[S. Kunze et al., Generation of Failure Models
through Automata Learning, WASA 2016]

Example
/ * Given the requested size of a buffer, return

the available space. * /
size_t get_buffer_size(size_t req_size) ;

/ * Return the pointer to the array. * /
uint8* get_buffer_array() ;

Example
/ * Given the requested size of a buffer, return

the available space. * /
size_t get_buffer_size(size_t req_size) ;

/ * Return the pointer to the array. * /
uint8* get_buffer_array() ;

What happens when:
The requested size is 0 or negative?

The available space is smaller than the requested size?

The pointer?
Or even…

hh.se

Example
/ * Given the requested size of a buffer, return

the available space. * /
size_t get_buffer_size(size_t req_size) ;

/ * Return the pointer to the array. * /
uint8* get_buffer_array() ;

What happens when:
The requested size is 0 or negative?

The available space is smaller than the requested size?

The pointer?
Or even… what is actually returned in normal conditions?
Requested size or available space?

Where is the Problem?

Fine as long the surrounding environment is aware of the
particular choice…

Where is the Problem?

Fine as long the surrounding environment is aware of the
particular choice…

When intermixing implementations things will go bad!

8
hh.se

Where is the Problem?

Fine as long the surrounding environment is aware of the
particular choice…

When intermixing implementations things will go bad!

Typical problems:
Treatment of corner cases
Indexes and timing off by one
…

hh.se

Symbolic Execution

Run the program on symbols instead of concrete data

“Split” the running on every decision point

Collect the different execution paths

Each path is defined by constraints over the program data

Tricky bits are library function calls, iterations, and recursion

12
hh.se

Symbolic Execution Applications

Popular in theorem proving / program logics

for formal verification of programs

Can be applied to the code or the model
(QuickCheck models are executable)

13
hh.se

Symbolic Execution Applications

Popular in theorem proving / program logics for formal
verification of programs

Can be applied to the code or the model
(QuickCheck models are executable)

Can be then used for Concolic Testing (Concrete / Symbolic)
The set of execution paths provide test partitioning

Test data generated by constraint solving

Further Tasks
Question 2

Can a non-conformant component cause trouble?

Further Tasks
Question 2

Can a non-conformant component cause trouble?

/ * Given the requested size of a buffer, return
the available space. * /

size_t get_buffer_size(size_t req_size) ;

Further Tasks
Question 2

Can a non-conformant component cause trouble?

/ * Given the requested size of a buffer, return
the available space. * /

size_t get_buffer_size(size_t req_size) ;

1 Return -1 when requesting too much

2 Return capacity when requesting too much

What Can Go Wrong?
i f (get_buffer_size(128) <= 0) {

/ * Bail out / recover * /
} else {

/ * Store 128 bytes of data in the buffer * /
}

Behaviour 2 of get_buffer_size will cause a segmentation fault!

i f (get_buffer_size(128) < 128) {
/ * Bail out / recover * /

} else { . . . }

Safe for both behaviours! How about other cases, especially
generated software?

Further Tasks
Question 3

When the system fails / crashes – was it caused by a non-conformant
component and if so, which one?

20
hh.se

Further Tasks
Question 3

When the system fails / crashes – was it caused by a non-conformant
component and if so, which one?

First idea:

Perform run-time checking of sorts

Record traces of function calls and their parameters

Check if they fall within the non-conformant model (specification)
of any of the components

Could be possibly done on a live system (ECU)

Conclusions

Model-based testing: an effective method of bug hunting

Bug fixing: a social process

Demonstrating probability and severity of a bug facilitates
the process:

machine learning to generalize the failing test case
symbolic execution to demonstrate bigger failures

Next Steps
Apply symbolic execution to search for consequences
and to diagnose failures

Apply to more realistic case studies
(Arctic Studio implementations, fault injections)

Implement necessary extensions in QuickCheck

MBT for Cyber-Physical Systems

32

Challenges:
•  Modeling system dynamics

(differential equations,
accuracy of numerics)

•  Sampling inputs and
outputs, approximate
conformance
(in time and value)

•  Coverage

MBT for Cyber-Physical Systems

33

[Aerts, Reniers, MRM.
Tool Prototype for Model-Based Testing of
Cyber-Physical Systems, ICTAC 2015]

6th Halmstad Summer School on Testing
http://ceres.hh.se/HSST_2016

Dino Distefano
FaceBook and

Queen Mary U.

Alastair Donaldson
Imperial College

Jeff Offutt
George Mason U.

Alexandre Petrenko
Comp. Sys. Research Inst.

Per Runesson
Lund U.

Marielle Stoelinga
U. Twente

34

Thank You!

Mohammad Mousavi
m.r.mousavi@hh.se
bit/ly/CERES_MBT

